Nonparametric Statistics of Image Neighborhoods for Unsupervised Texture Segmentation
نویسندگان
چکیده
In this paper, we present a novel approach to unsupervised texture segmentation that is based on a very general statistical model of image neighborhoods. We treat image neighborhoods as samples from an underlying, high-dimensional probability density function (PDF). We obtain an optimal segmentation via the minimization of an entropy-based metric on the neighborhood PDFs conditioned on the classification. Unlike previous work in this area, we model image neighborhoods directly without preprocessing or the construction of intermediate features. We represent the underlying PDFs nonparametrically, using Parzen windowing, thus enabling the method to model a wide variety of textures. The entropy minimization drives a level-set evolution that provides a degree of spatial homogeneity. We show that the proposed approach easily generalizes, from the two-class case, to an arbitrary number of regions by incorporating an efficient multi-phase level-set framework. This paper presents results on synthetic and real images from the literature, including segmentations of electron microscopy images of cellular structures. Nonparametric Statistics of Image Neighborhoods for Unsupervised Texture Segmentation Suyash P. Awate Tolga Tasdizen Ross T. Whitaker School of Computing, University of Utah, Salt Lake City, Utah 84112 {suyash,tolga,whitaker}@cs.utah.edu
منابع مشابه
Unsupervised Texture Segmentation with Nonparametric Neighborhood Statistics
This paper presents a novel approach to unsupervised texture segmentation that relies on a very general nonparametric statistical model of image neighborhoods. The method models image neighborhoods directly, without the construction of intermediate features. It does not rely on using specific descriptors that work for certain kinds of textures, but is rather based on a more generic approach tha...
متن کاملUnsupervised Texture Image Segmentation Using MRFEM Framework
Texture image analysis is one of the most important working realms of image processing in medical sciences and industry. Up to present, different approaches have been proposed for segmentation of texture images. In this paper, we offered unsupervised texture image segmentation based on Markov Random Field (MRF) model. First, we used Gabor filter with different parameters’ (frequency, orientatio...
متن کاملUnsupervised Texture Image Segmentation Using MRFEM Framework
Texture image analysis is one of the most important working realms of image processing in medical sciences and industry. Up to present, different approaches have been proposed for segmentation of texture images. In this paper, we offered unsupervised texture image segmentation based on Markov Random Field (MRF) model. First, we used Gabor filter with different parameters’ (frequency, orientatio...
متن کاملTexture Synthesis and Unsupervised Recognition with Nonparametric Multiscale Markov Random Field Models
In this paper we present noncausal, nonparametric, multiscale, Markov Random Field (MRF) models for synthesising and recognising texture. The models have the ability to capture the characteristics of a wide variety of textures, varying from the structured to the stochastic. For texture synthesis, we use our own novel multiscale approach, incorporating local annealing, allowing us to use large n...
متن کاملUnsupervised Image Segmentation based on the Multi-resolution Integration of Adaptive Local Texture Descriptors
The major aim of this paper consists of a comprehensive quantitative evaluation of adaptive texture descriptors when integrated into an unsupervised image segmentation framework. The techniques involved in this evaluation are: the standard and rotation invariant Local Binary Pattern (LBP) operators, multichannel texture decomposition based on Gabor filters and a recently proposed technique that...
متن کامل